Uncertainty Quantification
When AI can explain to us that it's unsure, it adds a critical layer of transparency for its safe deployment and use. We’re developing ways to foster and streamline the common practices of quantifying, evaluating, improving, and communicating uncertainty in the AI application development lifecycle.
Our work
IBM’s Uncertainty Quantification 360 toolkit boosts trust in AI
ReleasePrasanna Sattigeri and Vera Liao7 minute readAI boosts the discovery of metamaterials vital for next-gen gadgets
ResearchYoussef Mroueh, Karthikeyan Shanmugam, and Payel Das10 minute read
Publications
- Ide-San Ide
- Keerthiram Murugesan
- et al.
- 2024
- KAIS
- Lloyd Treinish
- Mukul Tewari
- et al.
- 2024
- AGU 2024
- Anthony Praino
- Lloyd Treinish
- et al.
- 2024
- AGU 2024
- Mingjian Jiang
- Yangjun Yangjun
- et al.
- 2024
- NeurIPS 2024
- Felipe Maia Polo
- Subha Maity
- et al.
- 2024
- NeurIPS 2024
- Debarun Bhattacharjya
- Balaji Ganesan
- et al.
- 2024
- NeurIPS 2024