Bonding, interfacial effects and adhesion in dlc
A. Grill, B.S. Meyerson, et al.
Proceedings of SPIE 1989
Qubit control electronics composed of CMOS circuits are of critical interest for next-generation quantum computing systems. A CMOS-based application-specific integrated circuit (ASIC) fabricated in 14-nm fin field-effect transistor (FinFET) technology was used to generate and sequence qubit control wave forms and demonstrate a two-qubit cross-resonance gate between fixed-frequency transmons. The controller was thermally anchored to the T=4 K stage of a dilution refrigerator and the measured power was 23 mW per qubit under active control. The chip generated single-side banded output frequencies between 4.5 and 5.5 GHz, with a maximum power output of -18 dBm. Randomized-benchmarking (RB) experiments revealed an average number of 1.71 instructions per Clifford (IPC) for single-qubit gates and 17.51 IPC for two-qubit gates. A single-qubit error per gate of ϵ1Q=8×10-4 and a two-qubit error per gate of ϵ2Q=1.4×10-2 were shown. A drive-induced Z rotation was observed by way of a rotary-echo experiment; this observation is consistent with the expected qubit behavior given the measured excess local-oscillator (LO) leakage from the CMOS chip. The effect of spurious drive-induced Z errors was numerically evaluated with a two-qubit model Hamiltonian and shown to be in good agreement with the measured RB data. The modeling results suggest that the Z error varies linearly with the pulse amplitude.
A. Grill, B.S. Meyerson, et al.
Proceedings of SPIE 1989
Igor Devetak, Andreas Winter
ISIT 2003
Salvatore Certo, Anh Pham, et al.
Quantum Machine Intelligence
Leo Liberti, James Ostrowski
Journal of Global Optimization