J.H. Stathis, R. Bolam, et al.
INFOS 2005
Nanoporous methyl silsesquioxane (MSSQ), which is an important and promising candidate for spin-on ultralow dielectric constant applications, has been produced via the thermosetting of MSSQ, templated by a nanodispersed, thermally decomposable pore generator (porogen)-poly(methyl methacrylate-co-dimethylaminoethyl methacrylate) [P(MMA-co-DMAEMA)]. Fourier transform infrared spectroscopy is used to study the interaction and structural changes of MSSQ/P(MMA-co-DMAEMA) nanocomposites as a function of curing temperature (ranging from 25 to 450°C) and porogen loading (ranging from 0 to 70 wt %). We find that strong hydrogen-bonding interactions occur between the -OH end groups in MSSQ and the tertiary amino groups in P(MMA-co-DMAEMA) in films at 25°C. An increase in cure temperature from 25 to 250°C and finally to 450°C transforms MSSQ from a material with many reactive end groups to a highly cross-linked structure. In addition, the amino substituent in P(MMA-co-DMAEMA) can act as a catalyst for the condensation and cross-linking of MSSQ. An increase of porogen loading to 70 wt % and a decrease in the silanol group concentration in MSSQ both hinder the formation of the -Si-O-Si- network. Finally, small-angle x-ray scattering (SAXS) results indicate that MSSQ resins initially having higher -OH end group concentrations ultimately generate smaller pores after the removal of porogens.
J.H. Stathis, R. Bolam, et al.
INFOS 2005
Imran Nasim, Melanie Weber
SCML 2024
William Hinsberg, Joy Cheng, et al.
SPIE Advanced Lithography 2010
I.K. Pour, D.J. Krajnovich, et al.
SPIE Optical Materials for High Average Power Lasers 1992