Modeling UpLink power control with outage probabilities
Kenneth L. Clarkson, K. Georg Hampel, et al.
VTC Spring 2007
Experimental results of tool-to-tool polarization comparison at hyper numerical aperture with POLARISTM PSM Polarimetry (Polarization Affected Resist Image Sensor) are presented. Measurements of tool-to-tool variation of the Intensity in the Preferred Polarization State (IPS) are shown with two modes of operation: 1) measurement of relative IPS difference between tools, which does not require calibration with on-board metrology and 2) estimate of actual IPS measurement, which requires calibration with on-board technique. Relative tool-to-tool variation is generally more important, as it, rather than actual IPS values, determines any induced tool-to-tool CD variation. Monitoring single tool stability has been shown in previous work to remain stable to within a fraction of 1%. Tool-to-tool monitoring has additional sources of variation. The example shown illustrates matching with on-board metrology generally within 2%, but up to 4% at a maximum. Some causes of these potential variations are discussed as well as strategies to improve accuracy. The impact of metrology-induced resist burning is assessed and believed to cause uncertainty in the measurement less than 1%. Finally, a set of measurements comparing azimuthal and horizontal-vertical polarization states are shown, illustrating the capability of POLARISTM to report the polarization behavior at arbitrary locations within the pupil. Although pupil-averaged IPS values match to the on-board technique within 1.2%, the angular resolved measurements do not necessarily match theoretical values and vary by up to 10%. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Kenneth L. Clarkson, K. Georg Hampel, et al.
VTC Spring 2007
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
R.B. Morris, Y. Tsuji, et al.
International Journal for Numerical Methods in Engineering
Imran Nasim, Michael E. Henderson
Mathematics