Seetharami Seelam, Apoorve Mohan, et al.
ISCA 2023
Large-scale storage systems employ erasure-coding redundancy schemes to protect against device failures. The adverse effect of latent sector errors on the Mean Time to Data Loss (MTTDL) and the Expected Annual Fraction of Data Loss (EAFDL) reliability metrics is evaluated. A theoretical model capturing the effect of latent errors and device failures is developed, and closed-form expressions for the metrics of interest are derived. The MTTDL and EAFDL of erasure-coded systems are obtained analytically for (i) the entire range of bit error rates, (ii) the symmetric, clustered, and declustered data placement schemes, and (iii) arbitrary device failure and rebuild time distributions under network rebuild bandwidth constraints. For realistic values of sector error rates, the results obtained demonstrate that MTTDL degrades whereas, for moderate erasure codes, EAFDL remains practically unaffected. It is demonstrated that, in the range of typical sector error rates and for very powerful erasure codes, EAFDL degrades as well. It is also shown that the declustered data placement scheme offers superior reliability.
Seetharami Seelam, Apoorve Mohan, et al.
ISCA 2023
Leland Chang
VLSI Technology and Circuits 2025
Stefano Galantino, Elisa Albanese, et al.
NetSoft 2024
Chander Govindarajan, Priyanka Naik, et al.
CLOUD 2024