I.K. Pour, D.J. Krajnovich, et al.
SPIE Optical Materials for High Average Power Lasers 1992
We present a brief experimental and theoretical review of the properties of electron transport in thermally grown SiO2. In thick films (≳ 10 nm), steady-state transport is controlled by polar electron-phonon scattering at electric fields below 2 × 106 V/cm. At higher fields, nonpolar scattering prevents the electrons from "running away" and allows steady-state trnasport to occur at average electron energies of a few eV. In thinner films (≲ 6 nm), the "vacuum emission" technique performed at room temperature and 80 K allows the observation of ballistic transport and phonon replicas, in good agreement with Monte Carlo simulations. These results are used to investigate in detail the electron-lattice coupling constants that result from the almost ideal structural and electronic properties of thermally grown SiO2 films. © 1988.
I.K. Pour, D.J. Krajnovich, et al.
SPIE Optical Materials for High Average Power Lasers 1992
Revanth Kodoru, Atanu Saha, et al.
arXiv
Frank R. Libsch, Takatoshi Tsujimura
Active Matrix Liquid Crystal Displays Technology and Applications 1997
Arvind Kumar, Jeffrey J. Welser, et al.
MRS Spring 2000