J.A. Barker, D. Henderson, et al.
Molecular Physics
In homogeneous chemical vapor deposition (HOMOCVD), reactive radicals are created in a relatively unreactive gas maintained at a much higher temperature than that of the substrate, allowing films to be deposited at low growth temperatures. In this paper, we review the basic aspects of the method and its application to amorphous hydrogenated silicon and germanium growth. HOMOCVD chemistry and reactor dynamics are treated to illustrate the most important parameters of the method, and to examine its potential usefulness in “low temperature processing.” In this context, the connection between HOMOCVD and current silicon CVD growth models is also explored. © 1984, American Vacuum Society. All rights reserved.
J.A. Barker, D. Henderson, et al.
Molecular Physics
J. Paraszczak, J.M. Shaw, et al.
Micro and Nano Engineering
A. Gangulee, F.M. D'Heurle
Thin Solid Films
Michiel Sprik
Journal of Physics Condensed Matter