R.A. Brualdi, A.J. Hoffman
Linear Algebra and Its Applications
A generalization of the random assignment problem asks the expected cost of the minimum-cost matching of cardinality k in a complete bipartite graph Km,n, with independent random edge weights. With weights drawn from the exponential distribution with intensity 1, the answer has been conjectured to be ∑/i, j≥, i+j<k 1/(m - i)(n - j). Here, we prove the conjecture for k ≤ 4, k = m = 5, and k = m = n = 6, using a structured, automated proof technique that results in proofs with relatively few cases. The method yields not only the minimum assignment cost's expectation but the Laplace transform of its distribution as well. From the Laplace transform we compute the variance in these cases, and conjecture that, with k = m = n → ∞, the variance is 2/n + O(log n/n2). We also include some asymptotic properties of the expectation and variance when k is fixed.
R.A. Brualdi, A.J. Hoffman
Linear Algebra and Its Applications
Sonia Cafieri, Jon Lee, et al.
Journal of Global Optimization
Kenneth L. Clarkson, K. Georg Hampel, et al.
VTC Spring 2007
W.F. Cody, H.M. Gladney, et al.
SPIE Medical Imaging 1994