C. Wang, S.W. Nam, et al.
IEDM 2013
We demonstrate for the first time a dense co-integration of co-planar nano-scaled SiGe p-FETs and InGaAs n-FETs. This result is based on hybrid substrates containing extremely-thin SiGe and InGaAs layers on insulators (ETXOI). We first show that such hybrid substrates can be fabricated by direct wafer bonding with stacked high-mobility layers thinner than 8nm. A process flow is presented that allows us to fabricate n- and p-channel field effect transistors with ultra-thin body and BOX (UTBB-FET) on the same wafer. Gate lengths down to 40nm produced at sub-μm gate-pitch are achieved. Working CMOS inverters are obtained using a common front-end which confirms the viability of this integration scheme for hybrid high-mobility dual-channel CMOS. We also highlight that back-biasing technique for Vt tuning can still be used despite the dualchannel structure, as implemented in standard ETSOI circuits. © 2013 IEEE.
C. Wang, S.W. Nam, et al.
IEDM 2013
Kafai Lai, Alan E. Rosenbluth, et al.
SPIE Advanced Lithography 2007
John G. Long, Peter C. Searson, et al.
JES
E. Burstein
Ferroelectrics