William G. Van der Sluys, Alfred P. Sattelberger, et al.
Polyhedron
Capture, photoionization, and impact-ionization cross sections for a 2.4-eV-deep electron trapping center in the silicon-dioxide layer of a metal-oxide-semiconductor structure have been determined using the photoinjection-photodepopulation technique. The electric field dependence of both capture and impact-ionization cross sections have been determined for accelerating fields in the range 0.1-1.0 MV/cm. Capture cross sections are of order 10-14 cm2 and uv photoionization cross sections greater than 10-18 cm2. High-field impact-ionization rates are 1-10 cm-1 for filled trap densities of order 5 × 1013 cm-3. © 1975 The American Physical Society.
William G. Van der Sluys, Alfred P. Sattelberger, et al.
Polyhedron
U. Wieser, U. Kunze, et al.
Physica E: Low-Dimensional Systems and Nanostructures
Thomas E. Karis, C. Mark Seymour, et al.
Rheologica Acta
Heinz Schmid, Hans Biebuyck, et al.
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures