Hazar Yueksel, Ramon Bertran, et al.
MLSys 2020
Learning to classify time series with limited data is a practical yet challenging problem. Current methods are primarily based on hand-designed feature extraction rules or domain-specific data augmentation. Motivated by the advances in deep speech processing models and the fact that voice data are univariate temporal signals, in this paper we propose Voice2Series (V2S), a novel end-to-end approach that reprograms acoustic models for time series classification, through input transformation learning and output label mapping. Leveraging the representation learning power of a large-scale pre-trained speech processing model, on 31 different time series tasks we show that V2S outperforms or is on part with state-of-the-art methods on 22 tasks, and improves their average accuracy by 1.72%. We further provide theoretical justification of V2S by proving its population risk is upper bounded by the source risk and a Wasserstein distance accounting for feature alignment via reprogramming. Our results offer new and effective means to time series classification.
Hazar Yueksel, Ramon Bertran, et al.
MLSys 2020
Saiteja Utpala, Alex Gu, et al.
NAACL 2024
Natalia Martinez Gil, Dhaval Patel, et al.
UAI 2024
Yuan Cai, Jasmina Burek, et al.
ICML 2021