Yixiong Chen, Weichuan Fang
Engineering Analysis with Boundary Elements
We simulate the Lipkin-Meshkov-Glick model using the variational-quantum-eigensolver algorithm on a neutral atom quantum computer. We test the ground-state energy of spin systems with up to 15 spins. Two different encoding schemes are used: an individual spin encoding where each spin is represented by one qubit, and an efficient Gray code encoding scheme that only requires a number of qubits that scales with the logarithm of the number of spins. This more efficient encoding, together with zero-noise extrapolation techniques, is shown to improve the fidelity of the simulated energies with respect to exact solutions.
Yixiong Chen, Weichuan Fang
Engineering Analysis with Boundary Elements
Moutaz Fakhry, Yuri Granik, et al.
SPIE Photomask Technology + EUV Lithography 2011
Michael E. Henderson
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
I.K. Pour, D.J. Krajnovich, et al.
SPIE Optical Materials for High Average Power Lasers 1992