H.-P. Schuchmann, C. von Sonntag, et al.
Journal of Photochemistry
The minimum fluence at which a laser pulse (FWHM 20 ns; 248 nm) causes a change in the surface of a film of polyethylene terephthalate (=PET) or polyimide (KaptonTM) in air has been measured by probing the surfaces with visible laser pulses of <1 ns at delay times of 10-10 000 ns. At fluences at which a single pulse left a permanent etch pit, the probe pulse showed an intense and rapid (<60 ns) darkening of the surface which may be attributed to the scattering of the beam by gas bubbles at the polymer surface. In 100 ns, a blast wave was visible which could be tracked for over 1000 ns. At the end (∞ ns), the polymer surface was not darkened but an etch pit was apparent. Progressively decreasing the fluence showed that even at fluences <0.025 J/cm2 for PET and<0.050 J/cm2 for Kapton, a single pulse transiently blackened the surface but did not leave an etch pit. The threshold for the ablative photodecomposition of these polymers appears to lie at a value of the fluence that is well below the threshold for measurable etching by a single laser pulse.
H.-P. Schuchmann, C. von Sonntag, et al.
Journal of Photochemistry
J. Siejka, J. Perriere, et al.
Applied Physics Letters
M. Scheuermann, C.C. Chi, et al.
Applied Physics Letters
R. Srinivasan
Proceedings of SPIE 1989