Distilling common randomness from bipartite quantum states
Igor Devetak, Andreas Winter
ISIT 2003
We consider the instability of the steady, axisymmetric base flow past a sphere, and a circular disk (oriented broadside-on to the incoming flow). Finite-element methods are used to compute the steady axisymmetric base flows, and to examine their linear instability to three-dimensional modal perturbations. The numerical results show that for the sphere and the circular disk, the first instability of the base flow is through a regular bifurcation, and the critical Reynolds number (based on the body radius) is 105 for the sphere, and 58.25 for the circular disk. In both cases, the unstable mode is non-axisymmetric with azimuthal wavenumber m = 1. These computational results are consistent with previous experimental observations (Magarvey & Bishop 1961 a, b; Nakamura 1976; Willmarth, Hawk & Harvey 1964). © 1993, Cambridge University Press. All rights reserved.
Igor Devetak, Andreas Winter
ISIT 2003
F. Odeh, I. Tadjbakhsh
Archive for Rational Mechanics and Analysis
Ligang Lu, Jack L. Kouloheris
IS&T/SPIE Electronic Imaging 2002
Robert F. Gordon, Edward A. MacNair, et al.
WSC 1985