J.P. Locquet, J. Perret, et al.
SPIE Optical Science, Engineering, and Instrumentation 1998
We propose a tensor neural network (t-NN) framework that offers an exciting new paradigm for designing neural networks with multidimensional (tensor) data. Our network architecture is based on the t-product (Kilmer and Martin, 2011), an algebraic formulation to multiply tensors via circulant convolution. In this t-product algebra, we interpret tensors as t-linear operators analogous to matrices as linear operators, and hence our framework inherits mimetic matrix properties. To exemplify the elegant, matrix-mimetic algebraic structure of our t-NNs, we expand on recent work (Haber and Ruthotto, 2017) which interprets deep neural networks as discretizations of non-linear differential equations and introduces stable neural networks which promote superior generalization. Motivated by this dynamic framework, we introduce a stable t-NN which facilitates more rapid learning because of its reduced, more powerful parameterization. Through our high-dimensional design, we create a more compact parameter space and extract multidimensional correlations otherwise latent in traditional algorithms. We further generalize our t-NN framework to a family of tensor-tensor products (Kernfeld, Kilmer, and Aeron, 2015) which still induce a matrix-mimetic algebraic structure. Through numerical experiments on the MNIST and CIFAR-10 datasets, we demonstrate the more powerful parameterizations and improved generalizability of stable t-NNs
J.P. Locquet, J. Perret, et al.
SPIE Optical Science, Engineering, and Instrumentation 1998
Alfred K. Wong, Antoinette F. Molless, et al.
SPIE Advanced Lithography 2000
Timothy J. Wiltshire, Joseph P. Kirk, et al.
SPIE Advanced Lithography 1998
Shu Tezuka
WSC 1991