Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
We derive new tradeoffs for reliable quantum information storage in a 2D local architecture based on subsystem quantum codes. Our results apply to stabilizer subsystem codes, that is, stabilizer codes in which part of the logical qubits does not encode any information. A stabilizer subsystem code can be specified by its gauge group a subgroup of the Pauli group that includes the stabilizers and the logical operators on the unused logical qubits. We assume that the physical qubits are arranged on a two-dimensional grid and the gauge group has spatially local generators such that each generator acts only on a few qubits located close to each other. Our main result is an upper bound kd=O(n), where k is the number of encoded qubits, d is the minimal distance, and n is the number of physical qubits. In the special case when both gauge group and the stabilizer group have spatially local generators, we derive a stronger bound kd2=O(n) which is tight up to a constant factor. © 2010 IEEE.
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
R.B. Morris, Y. Tsuji, et al.
International Journal for Numerical Methods in Engineering
Imran Nasim, Michael E. Henderson
Mathematics
Jianke Yang, Robin Walters, et al.
ICML 2023