Sai Zeng, Angran Xiao, et al.
CAD Computer Aided Design
The work of Karabed and Marcus on constructing finite-state codes between constrained systems called sofic systems is continued. It is shown that if Σ is a shift of finite type and S is a sofic system with k/n=h(s)/h(Σ) where h denotes entropy, there is a noncatastrophic finite-state invertible code from Σ to S at rate k : n if: 1) Σ and S satisfy a certain algebraic condition involving dimension groups, and 2) Σ and S satisfy a certain condition on their periodic point. Moreover, if S is an almost finite type sofic system then the decoder can be sliding block. © 1993, IEEE. All rights reserved.
Sai Zeng, Angran Xiao, et al.
CAD Computer Aided Design
Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
J.P. Locquet, J. Perret, et al.
SPIE Optical Science, Engineering, and Instrumentation 1998
György E. Révész
Theoretical Computer Science