W.C. Tang, H. Rosen, et al.
SPIE Optics, Electro-Optics, and Laser Applications in Science and Engineering 1991
We present a simple algorithm for approximating all roots of a polynomial p(x) when it has only real roots. The algorithm is based on some interesting properties of the polynomials appearing in the Extended Euclidean Scheme for p(x) and p′(x). For example, it turns out that these polynomials are orthogonal; as a consequence, we are able to limit the precision required by our algorithm in intermediate steps. A parallel implementation of this algorithm yields a P-uniform NC2 circuit, and the bit complexity of its sequential implementation is within a polylog factor of the bit complexity of the best known algorithm for the problem. © 1990.
W.C. Tang, H. Rosen, et al.
SPIE Optics, Electro-Optics, and Laser Applications in Science and Engineering 1991
Fernando Martinez, Juntao Chen, et al.
AAAI 2025
Chai Wah Wu
Linear Algebra and Its Applications
A.R. Conn, Nick Gould, et al.
Mathematics of Computation