Christian Badertscher, Ran Canetti, et al.
TCC 2020
We present the first round-optimal and plausibly quantum-safe oblivious transfer (OT) and multi-party computation (MPC) protocols from the computational CSIDH assumption - the weakest and most widely studied assumption in the CSIDH family of isogeny-based assumptions. We obtain the following results:
- The first round-optimal maliciously secure OT and MPC protocols in the plain model that achieve (black-box) simulation-based security while relying on the computational CSIDH assumption.
- The first round-optimal maliciously secure OT and MPC protocols that achieves Universal Composability (UC) security in the presence of a trusted setup (common reference string plus random oracle) while relying on the computational CSIDH assumption.
Prior plausibly quantum-safe isogeny-based OT protocols (with/without setup assumptions) are either not round-optimal, or rely on potentially stronger assumptions.
We also build a 3-round maliciously-secure OT extension protocol where each base OT protocol requires only 4 isogeny computations. In comparison, the most efficient isogeny-based OT extension protocol till date due to Lai et al.~[Eurocrypt 2021] requires 12 isogeny computations and 4 rounds of communication, while relying on the same assumption as our construction, namely the reciprocal CSIDH assumption.
Christian Badertscher, Ran Canetti, et al.
TCC 2020
Ehud Aharoni, Nir Drucker, et al.
CSCML 2023
Jonathan Bootle, Vadim Lyubashevsky, et al.
ESORICS 2021
Arnab Bag, Debadrita Talapatra, et al.
PETS 2023