Adversarial Support Alignment
Shangyuan Tong, Timur Garipov, et al.
ICLR 2022
This work considers identifying parameters characterizing a physical system’s dynamic motion directly from a video whose rendering configurations are inaccessible. Existing solutions require massive training data or lack generalizability to unknown rendering configurations. We propose a novel approach that marries domain randomization and differentiable rendering gradients to address this problem. Our core idea is to train a rendering-invariant state-prediction (RISP) network that transforms image differences into state differences independent of rendering configurations, e.g., lighting, shadows, or material reflectance. To train this predictor, we formulate a new loss on rendering variances using gradients from differentiable rendering. Moreover, we present an efficient, second-order method to compute the gradients of this loss, allowing it to be integrated seamlessly into modern deep learning frameworks. We evaluate our method in rigid-body and deformable-body environments using four tasks: state estimation, system identification, imitation learning, and visuomotor control, including a challenging task of emulating dexterous motion of a robotic hand from a video. Compared with existing methods, our approach achieves significantly lower errors in almost all tasks and has better generalizability among unknown rendering configuration
Shangyuan Tong, Timur Garipov, et al.
ICLR 2022
Han Cai, Chuang Gan, et al.
ICLR 2022
Gosia Lazuka, Andreea Simona Anghel, et al.
SC 2024
Natalia Martinez Gil, Dhaval Patel, et al.
UAI 2024