Sankar Basu
Journal of the Franklin Institute
Let S be a set of n closed intervals on the x-axis. A ranking assigns to each interval, s, a distinct rank, p(s)∈ {1, 2,…, n}. We say that s can see t if p(s)<p(t) and there is a point p∉ s∩ t so that p∉u for all u with p(s)<p(u)<p(t). It is shown that a ranking can be found in time O(n log n) such that each interval sees at most three other intervals. It is also shown that a ranking that minimizes the average number of endpoints visible from an interval can be computed in time 0(n5/2). The results have applications to intersection problems for intervals, as well as to channel routing problems which arise in layouts of VLSI circuits. © 1990, Taylor & Francis Group, LLC. All rights reserved.
Sankar Basu
Journal of the Franklin Institute
Frank R. Libsch, Takatoshi Tsujimura
Active Matrix Liquid Crystal Displays Technology and Applications 1997
Robert F. Gordon, Edward A. MacNair, et al.
WSC 1985
A. Skumanich
SPIE OE/LASE 1992