Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
This paper presents a novel method, PTrace, to locally and uniformly trace convex bicriterial Pareto-optimal fronts for bicriterial optimization problems that, unlike existing methods, does not require derivatives of the objectives with respect to the design variables. The method computes a sequence of points along the front in a user-specified direction from a starting point, such that the points are roughly uniformly spaced as per a spacing constraint from the user. At each iteration, a local quadratic model of the front is used to estimate an appropriate weighted sum of objectives that, on optimization, will give the next point on the front. A single objective optimization on this weighted sum then generates the actual point, which is then used to build a new local model. The method uses convexity-based heuristics to improve on mildly sub-optimal results from the optimizer and reuses cached points to improve the optimization speed and quality. We test the method on a synthetic and a 6-T SRAM power-performance tradeoff test case to demonstrate its effectiveness. © 2011 IEEE.
Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
Raymond Wu, Jie Lu
ITA Conference 2007
Pradip Bose
VTS 1998
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum