Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
In this paper, we study the problem of decomposing a superposition of a low-rank matrix and a sparse matrix when a relatively few linear measurements are available. This problem arises in many data processing tasks such as aligning multiple images or rectifying regular texture, where the goal is to recover a low-rank matrix with a large fraction of corrupted entries in the presence of nonlinear domain transformation. We consider a natural convex heuristic to this problem which is a variant to the recently proposed Principal Component Pursuit. We prove that under suitable conditions, this convex program guarantees to recover the correct low-rank and sparse components despite reduced measurements. Our analysis covers both random and deterministic measurement models. © 2012 IEEE.
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
R.B. Morris, Y. Tsuji, et al.
International Journal for Numerical Methods in Engineering
Imran Nasim, Michael E. Henderson
Mathematics
Jianke Yang, Robin Walters, et al.
ICML 2023