Graph-based constraints analysis approach for project scoping
Feng Li, Hao Chen, et al.
SOLI 2014
Diabetes can cause a variety of complications, which also leads to a high rate of repeated admission of patients with diabetes, which greatly increases the pain and financial burden of patients. Higher readmission rates also reduce hospital evaluation and operational efficiency. Therefore, it is urgent to screen out high-risk readmission patients in advance and introduce adjuvant treatment to reduce the probability of readmission. In this study, we propose a deep learning model combining wavelet transform and deep forest to hospital readmission of the diabetic. The proposed model has been tested with real clinical records and compared with several prevalent approaches to patient prediction. The experimental results show that the feature representation transformed by wavelet transform may well represent the original features and the deep forest is able to outperform the state-of-the-art approaches to classify diabetics.
Feng Li, Hao Chen, et al.
SOLI 2014
Xue Han, Lianxue Hu, et al.
ICWS 2020
Xue Han, Yabin Dang, et al.
ICWS 2019
Yuan Zhang, Peiyao Li, et al.
ICHI 2019