Zhiyuan He, Yijun Yang, et al.
ICML 2024
The volume of information, and in particular personal information, generated each day is increasing at a staggering rate. The ability to leverage such information depends greatly on being able to satisfy the many compliance and privacy regulations that are appearing all over the world. We present READI, a utility preserving framework for the unstructured document de-identification. READI leverages Named Entity Recognition and Relation Extraction technology to improve the quality of the entity detection, thus improving the overall quality of the data de-identification process. We evaluate the proposed approach on two different datasets and compare with the existing state-of-the-art approaches. We show that READI notably reduces the number of false positives and improves the utility of the de-identified text.
Zhiyuan He, Yijun Yang, et al.
ICML 2024
Teryl Taylor, Frederico Araujo, et al.
Big Data 2020
Anisa Halimi, Leonard Dervishi, et al.
PETS 2022
Chengkun Wei, Shouling Ji, et al.
IEEE TIFS