Nina Hanzlikova, Eduardo Rocha Rodrigues
SC 2013
Multilevel-cell (MLC) phase change memory (PCM) may provide both high capacity main memory and faster-than-Flash persistent storage. But slow growth in cell resistance with time, resistance drift, can cause transient errors in MLC-PCM. Drift errors increase with time, and prior work suggests refresh before the cell loses data. The need for refresh makes MLC-PCM volatile, taking away a key advantage. Based on the observation that most drift errors occur in a particular state in four-level-cell PCM, we propose to change from four levels to three levels, eliminating the most vulnerable state. This simple change lowers cell drift error rates by many orders of magnitude: three-level-cell PCM can retain data without power for more than ten years. With optimized encoding/decoding and a wearout tolerance mechanism, we can narrow the capacity gap between three-level and four-level cells. These techniques together enable low-cost, high-performance, genuinely nonvolatile MLC-PCM. Copyright 2013 ACM.
Nina Hanzlikova, Eduardo Rocha Rodrigues
SC 2013
Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
Pradip Bose
VTS 1998
Raymond Wu, Jie Lu
ITA Conference 2007