Heinz Schmid, Hans Biebuyck, et al.
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
Photoelectron angular distribution patterns from a single-crystal Cu(001) surface have produced dips, or ''silhouettes,'' in the low-energy, electron angular distribution measured around normal emission-a forward-scattering geometry that at higher energy produces a peak, or enhancement, in electron intensity. We have measured isoenergetic l=1 and l=2,0 photoelectrons that give different angular distribution patterns. These differences, and the low-energy electron intensity attenuation, are consistent with an electron scattering model that relies on the orbital angular momentum final-state dependence of the diffracting electron. © 1993 The American Physical Society.
Heinz Schmid, Hans Biebuyck, et al.
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
J.H. Kaufman, Owen R. Melroy, et al.
Synthetic Metals
J.H. Stathis, R. Bolam, et al.
INFOS 2005
J.K. Gimzewski, T.A. Jung, et al.
Surface Science