R. Ghez, J.S. Lew
Journal of Crystal Growth
Using density-functional theory as implemented in the projector- augmented wave method, we have calculated structures, energy levels, structures of the protonated forms, and proton affinities of the phosphanes PH3, PF3, P(CF3)3, PMe3, P(NMe2)3, P(C6H5)3, P(p-C6H4OMe2)3, and P(p-C6H4NMe2)3. The donor strengths of the phosphanes are discussed in terms of lone-pair energies and proton affinities. The influence of the donor ability of the phosphane ligands on the protonolytic cleavage of the metal-carbon bond in [NiCl(CH2CH2NH3)(PR3)2]+ complexes has been studied. A linear relationship between the lone-pair energies of the phosphanes and the activation barrier has been established. (C) 2000 Elsevier Science B.V.
R. Ghez, J.S. Lew
Journal of Crystal Growth
Zelek S. Herman, Robert F. Kirchner, et al.
Inorganic Chemistry
I.K. Pour, D.J. Krajnovich, et al.
SPIE Optical Materials for High Average Power Lasers 1992
T.N. Morgan
Semiconductor Science and Technology