Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
As we continue to evolve into large-scale parallel systems, many of them employing hundreds of computing engines to take on mission-critical roles, it is crucial to design those systems anticipating and accommodating the occurrence of failures. Failures become a commonplace feature of such large-scale systems, and one cannot continue to treat them as an exception. Despite the current and increasing importance of failures in these systems, our understanding of the performance impact of these critical issues on parallel computing environments is extremely limited. In this paper we develop a general failure modeling framework based on recent results from large-scale clusters and then we exploit this framework to conduct a detailed performance analysis of the impact of failures on system performance for a wide range of scheduling policies. Our results demonstrate that such failures can have a significant impact on the mean job response time and mean job slowdown under existing scheduling policies that ignore failures. We therefore investigate different scheduling mechanisms and policies to address these performance issues. Our results show that periodic checkpointing of jobs seems to do little to ease this problem. On the other hand, we demonstrate that information about the spatial and temporal correlation of failure occurrences can be very useful in designing a scheduling (job allocation) strategy to enhance system performance, with the former providing the greatest benefits. © Springer-Verlag Berlin Heidelberg 2005.
Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
Raymond Wu, Jie Lu
ITA Conference 2007
Pradip Bose
VTS 1998
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum