Shiyi Chen, Daniel Martínez, et al.
Physics of Fluids
A new formulation for the complex index of refraction, N(E)=n(E)-ik(E), as a function of photon energy E, for crystalline semiconductors and dielectrics is developed based on our previous derivation of N(E) for amorphous materials. The extinction coefficient k(E) is deduced from a one-electron model with finite lifetime for the excited electron state. The refractive index n(E) is then derived from the Kramers-Kronig relation as the Hilbert transform of k(E). It is shown that n()>1. Excellent agreement is found between our equations for n(E) and k(E) and published measured values for crystalline Si, Ge, GaP, GaAs, GaSb, InP, InAs, InSb, SiC, cubic C, and -SiO2, over a wide range of energies (020 eV). Far fewer parameters, all of which have physical significance, are required and they can be determined for a particular material from the position and strength of the peaks in the k spectrum. © 1988 The American Physical Society.
Shiyi Chen, Daniel Martínez, et al.
Physics of Fluids
S.F. Fan, W.B. Yun, et al.
Proceedings of SPIE 1989
J.C. Marinace
JES
Revanth Kodoru, Atanu Saha, et al.
arXiv