A. Nagarajan, S. Mukherjee, et al.
Journal of Applied Mechanics, Transactions ASME
Phonon-induced coherence loss (PICL) is produced by a monoenergetic nonequilibrium distribution of phonons in LaF3+. The phonons are generated by relaxation between excited states of the Pr3+ ion after selective excitation with a pulsed, tunable dye laser. The optical dephasing is observed from the effect on the free-induction decay of Pr3+ ions whose excited-state level separation is resonant with the phonons. It is shown that PICL is a sensitive detector of monoenergetic phonons, and can be used to study phonon dynamics. The observed rate of optical dephasing is reduced relative to an equivalent occupation of 23-cm-1 phonons produced thermally. © 1985 The American Physical Society.
A. Nagarajan, S. Mukherjee, et al.
Journal of Applied Mechanics, Transactions ASME
Heinz Schmid, Hans Biebuyck, et al.
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
J.A. Barker, D. Henderson, et al.
Molecular Physics
A. Gupta, R. Gross, et al.
SPIE Advances in Semiconductors and Superconductors 1990