Control Flow Operators in PyTorch
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
We develop a flexible, open-source framework for query answering on relational databases by adopting methods and techniques from the Semantic Web community and the data exchange community, and we apply this framework to a medical use case. We first deploy module-extraction techniques to derive a concise and relevant sub-ontology from an external reference ontology. We then use the chase procedure from the data exchange community to materialize a universal solution that can be subsequently used to answer queries on an enterprise medical database. Along the way, we identify a new class of well-behaved acyclic EL-ontologies extended with role hierarchies, suitably restricted functional roles, and domain/range restrictions, which cover our use case. We show that such ontologies are C-stratified, which implies that the chase procedure terminates in polynomial time. We provide a detailed overview of our real-life application in the medical domain and demonstrate the benefits of this approach, such as discovering additional answers and formulating new queries.
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Gosia Lazuka, Andreea Simona Anghel, et al.
SC 2024
Robert Farrell, Rajarshi Das, et al.
AAAI-SS 2010
Ben Fei, Jinbai Liu
IEEE Transactions on Neural Networks