Martin Charles Golumbic, Renu C. Laskar
Discrete Applied Mathematics
In this paper we consider a well-known class of valid inequalities for the p-median and the uncapacitated facility location polytopes, the odd cycle inequalities. It is known that their separation problem is polynomially solvable. We give a new polynomial separation algorithm based on a reduction from the original graph. Then, we define a non-trivial class of graphs, where the odd cycle inequalities together with the linear relaxations of both the p-median and uncapacitated facility location problems, suffice to describe the associated polytope. To do this, we first give a complete description of the fractional extreme points of the linear relaxation for the p-median polytope in this class of graphs. © 2007 Elsevier Ltd. All rights reserved.
Martin Charles Golumbic, Renu C. Laskar
Discrete Applied Mathematics
Donald Samuels, Ian Stobert
SPIE Photomask Technology + EUV Lithography 2007
William Hinsberg, Joy Cheng, et al.
SPIE Advanced Lithography 2010
James Lee Hafner
Journal of Number Theory