Gal Badishi, Idit Keidar, et al.
IEEE TDSC
The role of smartphones in traffic applications is typically limited to front-end interface. Although smartphones have significant computational resources, which are most likely to increase further in the near future, most of the computations are still performed on servers. In this paper, we study the computational performance of centralized, decentralized, and hybrid architectures for intelligent transportation system applications. We test these architectures on various Android devices. For implementation, we consider Android Software Development Kit (SDK) and Android Native Development Kit (NDK). Numerical results show that recent smartphones take less than 1 s to estimate the speed for each road segment in a network of 10 000 links from speed measurements at 1000 links. The proposed decentralized architecture significantly reduces the overhead of the communication network and paves the way for new cooperative traffic applications and operations.
Gal Badishi, Idit Keidar, et al.
IEEE TDSC
Michael C. McCord, Violetta Cavalli-Sforza
ACL 2007
Donald Samuels, Ian Stobert
SPIE Photomask Technology + EUV Lithography 2007
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997