John R. Kender, Rick Kjeldsen
IEEE Transactions on Pattern Analysis and Machine Intelligence
Let A=(aij) be a real symmetric matrix of order n. We characterize all nonnegative vectors x=(x1,...,xn) and y=(y1,...,yn) such that any real symmetric matrix B=(bij), with bij=aij, i≠jhas its eigenvalues in the union of the intervals [bij-yi, bij+ xi]. Moreover, given such a set of intervals, we derive better bounds for the eigenvalues of B using the 2n quantities {bii-y, bii+xi}, i=1,..., n. © 1981.
John R. Kender, Rick Kjeldsen
IEEE Transactions on Pattern Analysis and Machine Intelligence
F. Odeh, I. Tadjbakhsh
Archive for Rational Mechanics and Analysis
T. Graham, A. Afzali, et al.
Microlithography 2000
Zhihua Xiong, Yixin Xu, et al.
International Journal of Modelling, Identification and Control