Gosia Lazuka, Andreea Simona Anghel, et al.
SC 2024
Deep neural networks (DNNs) have become ubiquitous in machine learning, but their energy consumption remains problematically high. An effective strategy for reducing such consumption is supply-voltage reduction, but if done too aggressively, it can lead to accuracy degradation. This is due to random bit-flips in static random access memory (SRAM), where model parameters are stored. To address this challenge, we have developed NeuralFuse, a novel add-on module that handles the energy-accuracy tradeoff in low-voltage regimes by learning input transformations and using them to generate error-resistant data representations, thereby protecting DNN accuracy in both nominal and low-voltage scenarios. As well as being easy to implement, NeuralFuse can be readily applied to DNNs with limited access, such cloud-based APIs that are accessed remotely or non-configurable hardware. Our experimental results demonstrate that, at a 1% bit-error rate, NeuralFuse can reduce SRAM access energy by up to 24% while recovering accuracy by up to 57%. To the best of our knowledge, this is the first approach to addressing low-voltage-induced bit errors that requires no model retraining.
Gosia Lazuka, Andreea Simona Anghel, et al.
SC 2024
Kristjan Greenewald, Yuancheng Yu, et al.
NeurIPS 2024
Natalia Martinez Gil, Dhaval Patel, et al.
UAI 2024
Shubhi Asthana, Pawan Chowdhary, et al.
KDD 2021