Group sparse CNNs for question classification with answer sets
Mingbo Ma, Liang Huang, et al.
ACL 2017
Many natural language understanding (NLU) tasks, such as shallow parsing (i.e., text chunking) and semantic slot filling, require the assignment of representative labels to the meaningful chunks in a sentence. Most of the current deep neural network (DNN) based methods consider these tasks as a sequence labeling problem, in which a word, rather than a chunk, is treated as the basic unit for labeling. These chunks are then inferred by the standard IOB (Inside-OutsideBeginning) labels. In this paper, we propose an alternative approach by investigating the use of DNN for sequence chunking, and propose three neural models so that each chunk can be treated as a complete unit for labeling. Experimental results show that the proposed neural sequence chunking models can achieve start-of-the-art performance on both the text chunking and slot filling tasks.
Mingbo Ma, Liang Huang, et al.
ACL 2017
Bowen Zhou, Bing Xiang, et al.
SSST 2008
Mo Yu, Wenpeng Yin, et al.
ACL 2017
Ramesh Nallapati, Bowen Zhou, et al.
CoNLL 2016