Jianguo Wu, Honglun Xu, et al.
IEEE T-ASE
Remaining useful life prediction plays an important role in ensuring the safety, availability, and efficiency of various engineering systems. In this paper, we propose a flexible Bayesian multiple-phase modeling approach to characterize degradation signals for prognosis. The priors are specified with a novel stochastic process and the multiple-phase model is formulated to a novel state-space model to facilitate online monitoring and prediction. A particle filtering algorithm with stratified sampling and partial Gibbs resample-move strategy is developed for online model updating and residual life prediction. The advantages of the proposed method are demonstrated through extensive numerical studies and real case studies.