Patterning of highly conducting polyaniline films
T. Graham, A. Afzali, et al.
Microlithography 2000
We introduce fast Fourier transform algorithms (FFTs) designed for fused multiply-add architectures. We show how to compute a complex discrete Fourier transform (DFT) of length n = 2mwith8/3nm-16/9n+ 2/9(-1)mreal multiply-adds. For real input, this algorithm uses4/3nm– 17/9n+3-1/9(-1)mreal multiply-adds. We also describe efficient multidimensional FFTs. These algorithms can be used to compute the DFT of an nx n array of complex data using 14/3n2m- 4/3jn2(-1)m+16/9 real multiply-adds. For each problem studied, the number of multiply-adds that our algorithms use is a record upper bound for the number required. © 1993 American Mathematical Society.
T. Graham, A. Afzali, et al.
Microlithography 2000
Chai Wah Wu
Linear Algebra and Its Applications
Heinz Koeppl, Marc Hafner, et al.
BMC Bioinformatics
Zhihua Xiong, Yixin Xu, et al.
International Journal of Modelling, Identification and Control