Indexing weighted-sequences in large databases
Haixun Wang, Chang-Shing Perng, et al.
ICDE 2003
Intrusion detection is an essential component of computer security mechanisms. It requires accurate and efficient analysis of a large amount of system and network audit data. It can thus be an application area of data mining. There are several characteristics of audit data: abundant raw data, rich system and network semantics, and ever "streaming". Accordingly, when developing data mining approaches, we need to focus on: feature extraction and construction, customization of (general) algorithms according to semantic information, and optimization of execution efficiency of the output models. In this paper, we describe a data mining framework for mining audit data for intrusion detection models. We discuss its advantages and limitations, and outline the open research problems.
Haixun Wang, Chang-Shing Perng, et al.
ICDE 2003
Jiangtao Ren, Xiaoxiao Shi, et al.
SDM 2008
Xian Wu, Wei Fan, et al.
WWW 2012
Wei Fan, Ian Davidson
SDM 2007