Ruixiong Tian, Zhe Xiang, et al.
Qinghua Daxue Xuebao/Journal of Tsinghua University
In power generation and other production settings, technological constraints force restrictions on the number of time periods that a machine must stay up once activated, and stay down once deactivated. We characterize the polyhedral structure of a model representing these restrictions. We also describe a cutting-plane method for solving integer programs involving such min-up and min-down times for machines. Finally, we demonstrate how the polytope of our study generalizes the well-known cross polytope (i.e., generalized octahedron). © 2004 Elsevier B.V. All rights reserved.
Ruixiong Tian, Zhe Xiang, et al.
Qinghua Daxue Xuebao/Journal of Tsinghua University
M. Tismenetsky
International Journal of Computer Mathematics
Frank R. Libsch, Takatoshi Tsujimura
Active Matrix Liquid Crystal Displays Technology and Applications 1997
Charles Micchelli
Journal of Approximation Theory