Mateus Do Amor Devino Pereira, Evaline Ju, et al.
CAIN 2025
Recently, great progress has been made in the field of Few-Shot Learning (FSL). While many different methods have been proposed, one of the key factors leading to higher FSL performance is surprisingly simple. It is the backbone network architecture used to embed the images of the few-shot tasks. While first works on FSL resorted to small architectures with just a few convolution layers, recent works show that large architectures pre-trained on the training portion of FSL datasets produce strong features that are more easily transferable to novel few-shot tasks, thus attaining significant gains to methods using them. Despite these observations, little to no work has been done towards finding the right backbone for FSL. In this paper we propose MetAdapt that not only meta-searches for an optimized architecture for FSL using Network Architecture Search (NAS), but also results in a model that can adaptively ‘re-wire’ itself predicting the better architecture for a given novel few-shot task. Using the proposed approach we observe strong results on two popular few-shot benchmarks: miniImageNet and FC100.
Mateus Do Amor Devino Pereira, Evaline Ju, et al.
CAIN 2025
Ariel Gera, Odellia Boni, et al.
ACL 2025
Subha Maity, Mayank Agarwal, et al.
ICLR 2024
Maddalena Torricelli, Mauro Martino, et al.
WebSci 2024