Edge guided single depth image super resolution
Jun Xie, Rogerio Schmidt Feris, et al.
ICIP 2014
While large-scale discriminative training has triumphed in many NLP problems, its definite success on machine translation has been largely elusive. Most recent efforts along this line are not scalable (training on the small dev set with features from top ∼100 most frequent words) and overly complicated. We instead present a very simple yet theoretically motivated approach by extending the recent framework of "violation-fixing perceptron", using forced decoding to compute the target derivations. Extensive phrase-based translation experiments on both Chinese-to-English and Spanish-to-English tasks show substantial gains in BLEU by up to +2.3/+2.0 on dev/test over MERT, thanks to 20M+ sparse features. This is the first successful effort of large-scale online discriminative training for MT.
Jun Xie, Rogerio Schmidt Feris, et al.
ICIP 2014
Eugene H. Ratzlaff
ICDAR 2001
Ritendra Datta, Jianying Hu, et al.
ICPR 2008
Srideepika Jayaraman, Chandra Reddy, et al.
Big Data 2021