Goji Wakamatsu, Kentaro Goto, et al.
Proceedings of SPIE - The International Society for Optical Engineering 2012
For further advancement of next-generation high-performance computers, low-power consumption, high-density, and low-cost optical interconnection technologies should be adopted, and thus, optical printed circuit boards (O-PCBs) integrating polymer optical waveguides would be a key device. In particular, for low-power consumption, the link power budget should be low enough. In the optical link that consists of two waveguides on PCBs and a graded-index (GI) multimode fiber (MMF) connecting the two PCBs, such a low power budget is expected when GI-core waveguides are utilized. Essentially low coupling loss between the GI-core waveguide and a GI-MMF is one of the reasons of the low power budget, since the mode power profile mismatch between MMFs and GI-core waveguides is smaller than that between MMFs and SI-core waveguides. In this paper, we compose an optical link of vertical cavity surface emitting laser (VCSEL)-waveguide: SI or GI-MMF-waveguide: SI or GI-PD, and quantitatively evaluate the coupling loss at each connection point. When all the components are perfectly aligned, the total coupling loss is 1.9 dB in the link with GI-core waveguide. On the other hand, the SI-core waveguide link shows 0.8 dB higher coupling loss (2.72dB) than the GI-core waveguide link. When a misalignment of ±10 ìm is added at each connection and 50-ìm gaps are added at both VCSEL-waveguide and waveguide-PD connections, the GI-waveguide link demonstrate approximately 2-dB advantage in the power budget over the SI-waveguide link. Given limited power budget consideration for high bit rate optical links (∼25 Gb/s), GI-core waveguide enabling low link power budget would be a promising component for O-PCBs.. © 2012 SPIE.
Goji Wakamatsu, Kentaro Goto, et al.
Proceedings of SPIE - The International Society for Optical Engineering 2012
Kenneth L. Clarkson, K. Georg Hampel, et al.
VTC Spring 2007
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
R.B. Morris, Y. Tsuji, et al.
International Journal for Numerical Methods in Engineering