Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
We generalize the k-means algorithm presented by the authors [14] and show that the resulting algorithm can solve a larger class of clustering problems that satisfy certain properties (existence of a random sampling procedure and tightness). We prove these properties for the k-median and the discrete k-means clustering problems, resulting in O(2(k/ε(1) dn) time (1 + ε)-approximation algorithms for these problems. These are the first algorithms for these problems linear in the size of the input (nd for n points in d dimensions), independent of dimensions in the exponent, assuming k and ε to be fixed. A key ingredient of the k-median result is a (1 + ε)-approximation algorithm for the 1-median problem which has running time O(2(1/ε) d). The previous best known algorithm for this problem had linear running time. © Springer-Verlag Berlin Heidelberg 2005.
Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
Pradip Bose
VTS 1998
Raymond Wu, Jie Lu
ITA Conference 2007
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum