Donald Samuels, Ian Stobert
SPIE Photomask Technology + EUV Lithography 2007
We present a general method for worst-case limit kinematic tolerance analysis: computing the range of variation in the kinematic function of a mechanism from its part tolerance specifications. The method covers fixed and multiple contact mechanisms with parametric or geometric part tolerances. We develop a new model of kinematic variation, called kinematic tolerance space, that generalizes the configuration space representation of nominal kinematic function. Kinematic tolerance space captures quantitative and qualitative variations in kinematic function due to variations in part shape and part configuration. We derive properties of kinematic tolerance space that express the relationship between the nominal kinematics of mechanisms and their kinematic variations. Using these properties, we develop a practical kinematic tolerance space computation algorithm for planar pairs with two degrees of freedom. Copyright © 1996 Elsevier Science Ltd.
Donald Samuels, Ian Stobert
SPIE Photomask Technology + EUV Lithography 2007
Matthias Kaiserswerth
IEEE/ACM Transactions on Networking
Fan Jing Meng, Ying Huang, et al.
ICEBE 2007
György E. Révész
Theoretical Computer Science