Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
We study the interaction of silicon photonic crystal nanocavities with infiltrated colloidal PbS nanocrystals as a viable and efficient source for achieving indistinguishable and single photons. Nanocrystal-nanocaviry coupling is predicted at near-infrared wavelengths, suggesting the possibility towards exciting silicon-based nanophotonic lasers, and novel efficient sources for fiber and silicon-based quantum information networks and systems. Two effective designs for nanocrystal-nanocavity coupling are illustrated that exhibit moderate to high cavity quality factors, and ultra-small modal volumes for spontaneous emission enhancements. It is shown that in principle our system can approach the observation of strong exciton-cavity coupling in a solid-state implementation at room temperature.
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
R.B. Morris, Y. Tsuji, et al.
International Journal for Numerical Methods in Engineering
Imran Nasim, Michael E. Henderson
Mathematics
Jianke Yang, Robin Walters, et al.
ICML 2023