Group sparse CNNs for question classification with answer sets
Mingbo Ma, Liang Huang, et al.
ACL 2017
In this paper, we present multiple approaches to improve sentiment analysis on Twitter data. We first establish a state-of-the-art baseline with a rich feature set. Then we build a topic-based sentiment mixture model with topic-specific data in a semi-supervised training framework. The topic information is generated through topic modeling based on an efficient implementation of Latent Dirichlet Allocation (LDA). The proposed sentiment model outperforms the top system in the task of Sentiment Analysis in Twitter in SemEval-2013 in terms of averaged F scores. © 2014 Association for Computational Linguistics.
Mingbo Ma, Liang Huang, et al.
ACL 2017
Bowen Zhou, Bing Xiang, et al.
SSST 2008
Mo Yu, Wenpeng Yin, et al.
ACL 2017
Lidan Wang, Minwei Feng, et al.
EMNLP 2015