Edge guided single depth image super resolution
Jun Xie, Rogerio Schmidt Feris, et al.
ICIP 2014
We address the problem of feature weight learning for image clustering. In practice, before clustering data, we generally normalize all data features between 0 and 1, because we cannot determine which features are more important. In this paper, we provide a feature weight learning framework for clustering which can obtain the feature weights and cluster labels simultaneously. An alternative optimization algorithm is adopted to solve this problem. Empirical studies on the toy data and real image data demonstrate our algorithm's effectiveness in improving the clustering performance. © 2008 IEEE.
Jun Xie, Rogerio Schmidt Feris, et al.
ICIP 2014
Eugene H. Ratzlaff
ICDAR 2001
Ritendra Datta, Jianying Hu, et al.
ICPR 2008
Jonathan H. Connell, Nalini K. Ratha, et al.
ICIP 2002