(1 + ε)-approximate sparse recovery
Eric Price, David P. Woodruff
FOCS 2011
We improve upon recent lower bounds on the minimum distortion of embedding certain finite metric spaces into L1. In particular, we show that for every n ≥ 1, there is an n-point metric space of negative type that requires a distortion of ω(log log n) for such an embedding, implying the same lower bound on the integrality gap of a well-known semidefinite programming relaxation for sparsest cut. This result builds upon and improves the recent lower bound of (log log n) 1/6-o(1) due to Khot and Vishnoi [The unique games conjecture, integrality gap for cut problems and the embeddability of negative type metrics into l 1, in Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, IEEE, Piscataway, NJ, 2005, pp. 53-62]. We also show that embedding the edit distance metric on {0, 1} n into L 1 requires a distortion of Ω(log n). This result improves a very recent (log n) 1/2-o(1) lower bound by Khot and Naor [Nonembeddability theorems via Fourier analysis, in Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, IEEE, Piscataway, NJ, 2005, pp. 101-112]. © 2009 Society for Industrial and Applied Mathematics.
Eric Price, David P. Woodruff
FOCS 2011
Yao Qi, Raja Das, et al.
ISSTA 2009
Daniel M. Bikel, Vittorio Castelli
ACL 2008
Victor Valls, Panagiotis Promponas, et al.
IEEE Communications Magazine